EP 0 616 289 B1

European Patent Office

- @) e AR AR KA

Office européen des brevets (11) EP 0 61 6 289 B1
(12) EUROPEAN PATENT SPECIFICATION
(45) Date of publication and mention (51) nt. C1.7: GO6F 17/30
of the grant of the patent:

24.05.2000 Bulletin 2000/21
(21) Application number: 94301335.9

(22) Date of filing: 24.02.1994

(54) System and method for interactively formulating queries
Verfahren und System zum formulieren interaktiver Abfragen
Procédé et systéme pout formuler des requétes interactivement

(84) Designated Contracting States: - Siwek, Howard Alexander
DEFRGB San Jose, California 95118 (US)
(30) Priority: 17.03.1993 US 32914 (74) Representative:
Williams, Julian David
(43) Date of publication of application: {BM United Kingdom Limited,
21.09.1994 Bulletin 1994/38 Intellectual Property Department,
Hursley Park
(73) Proprietor: Winchester, Hampshire S021 2JN (GB)
International Business Machines
Corporation (56) References cited:
Armonk, N.Y. 10504 (US) EP-A- 0491 517 WO-A-92/16903
(72) ‘nventors: . IBM TECHNICAL DISCLOSURE BULLETIN.,
- Jacopi, Tom William vol.35, no.4A, September 1992, NEW YORK us
San Jose, California 95119 (US) pages 101 - 102 'Dynamic, interactive Show SaL
« Payton, Brian Gerrit window’

San Jose, California 95130 (US})

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.
99(1) European Patent Convention).

Printed by Xerox {UK} Business Services
2.16.7 (HAS)/3.6

1 EP 0 616 289 B1 2

Description

[0001]) The present invention relates to computer-
ized relational database informational retrieval systems,
and more particularly refates to user interfaces for
retrieving data from relational databases.

{0002) Computerized Database Management Sys-
tems (DBMSs) enable enterprises to efficiently manage
and access data. DBMSs store data electronically in
data storage devices such as direct access storage
devices (DASD). Computer programs run by a compu-
ter system provide access to the database. The data-
base user controls the computer processor and
memory from a terminal using interaction devices such
as a keyboard or a mouse.

[0003] The DBMS provides access to the database
by logically controlling the storage and retrieval of the
data. A relational DBMS logically stores the data organ-
ized into a plurality of tables consisting of a plurality of
rows and columns. Columns contain data of the same
kind. Rows contain different kinds of data about a single
thing. The tables and columns are assigned names
through which a user can identify tables, columns and
rows for data retrieval.

[0004]) Data is retrievable from a relational database
by a variety of methods. A computer program can
extract information from the database without any
human user intervention. Additionally, database users
can interact with the database using a query system
program serving as an access program to the database
system.

[0005] A common interface to a relational database

is the Structured Query Language (SQL). SQL queries

identify the database, the columns and rows for retrieval
of the data. The columns are selected in the SQL
SELECT statement. The rows are determined by the
condition statements in the SQL SELECT statement
WHERE clause. The condition statement identifies rows
as a function of at least one column of at least one table.
For example, an enterprise may have an employee
database from which reports are generated from time to
time, such as a report on the names of employees in a
sales department who have been with the company for
more than 10 years. An SQL statement would be used
to retrieve the data from the employee database by
retrieving all the employee names from a name column
of a database table where the corresponding column in
the same row for employee department has the value
sales” and the corresponding column in the same row
for employment years has a value greater than 10. The
SQL statement would look like:

SELECT EMPNAME

FROM EMP_TABLE
WHERE EMP.DEPT = "sales” and EMP.YEARS >
10.

[0006] The foregoing SQL statement is a simplistic

10

15

20

25

30

35

40

45

50

55

example of a query statement that is used to refrieve
data stored in a computerized database system. The
queries can be quite complex involving many tables and
many conditions placed on the row values in order to
identify the rows to be refrieved.

[0007] There are a number of commercially availa-
ble database query user interface programs which help
the database user interactively construct queries for
data retrieval. One such database interface program is
the QMF product from the IBM Corporation. One feature
of the QMF product which assists users in writing SQL
queries is called Prompted Query. In Prompted Query,
users can write conditions to restrict the answer set
(rows of data) returned by the DBMS. These conditions
are placed in the SQL WHERE clause. The conditions
are comprised of predicates which are connected by
AND and OR operators. Predicates are statements hav-
ing variables that are substituted having a true or false
value. For example, "EMPDEPT=XYZ" and
"EMP.YEARS>20" have true or false values depending
on the value for the variables EMP.DEPT and
EMP.YEARS.

[0008] One area which needs improvement in the
Prompted Query system for writing the SQL condition
statements is the limitations for specifying the prece-
dence of the predicates. The condition statements can
be very complicated with a number of predicates which
need to be nested in parentheses in order to specity the
precedence for the relationship between the predicates.
For example, a query can try to retrieve all employees in
a given department who have been there for ten years
or employees in a different department who have been
there for twenty years or any employee who has been
there more than 30 years. The Boolean algebra state-
ment for the condition can be written as: ((EMP.DEPT =
XYZ) AND (EMPYEARS > 10)) OR ((EMP.DEPT =
ABC) AND (EMPYEARS > 20)) OR (EMPYEARS >
30). The parentheses help to determine the relationship
of the predicates for satisfying the condition statement.
Prompted query is limited by an inability to provide
parentheses for nesting predicates.

[0009] When the number of predicates becomes
large, and the degree of ordering of the predicates sat-
istying the queries is complicated, there is a need to
indicate the order and relationship between predicates
using parentheses. Moreover, it is difficult for the user to
construct complicated queries using only the Boolean
algebra statement text representation.

[0010] Many Boolean statements are logically
equivalent; however some are more of an efficient rep-
resentation of the condition statement. For example, a
graph that can be represented by the Boolean algebra
statements (P1 AND P4) OR (P3 AND P5) OR (P1 AND
P2 AND P5), can also be represented by the Boolean
algebra statement (P5 AND (P3 OR (P1 AND P2))) as
well as (P1 AND (P4 OR (P2 AND PS)) OR (P3 AND
P5). That is, all of the preceding Boolean statements
are logically equivalent. However, the latter statement is

3 EP 0 616 289 B1 4

the most efficient representation with the least repetition
of predicates. There is a need when translating between
a Boolean representation and a graphical representa-
tion that consistency be maintained so that the transla-
tions are not confusing for the user.

[0011] There is also a need to better represent the
flow of the conditions so that the user can more readily
understand the results of the query.

[0012] EP 0 491 517 A4 discloses a system and
method for graphically representing a query for refriev-
ing data from a relational database, whereby logical
operators are defined and linked to predicates using a
tree structure format.

[0013] in general, there is a need for allowing users
1o access databases without having to know the compli-
cated syntax of SQL queries.

[0014] In accordance with the present invention,
there is now provided a method for interactively formu-
lating queries for retrieving data stored in tables having
columns and rows in a computerized database system
having a central processing unit (CPU), memory, a dis-
play device, and a user interaction device, the method
comprising the steps of: receiving input identifying at
Jeast one table containing the query data; receiving
input identifying at least one column of the identified
table containing the query data; receiving input identity-
ing at least one row in the identified table containing the
query data using a condition statement and character-
ised in that said condition statement is interactively for-
mulated by the steps of: (a) displaying a graphical flow
representation comprising at least one flowline compris-
ing at least one arc, a predicate assigned to each arc,
and a plurality of nodes, each arc positioned between a
From_Node node and a To_Node node, wherein predi-
cates on the same flowline are combined through a log-
ical AND operation, and predicates on different flowlines
between the same nodes are combined through a logi-
cal OR operation; (b) receiving input specifying a posi-
tion on a flowline of the graphical flow representation for
insertion of a predicate; (c) receiving input of the predi-
cate; (d) displaying the graphical flow representation
with the predicate inserted in the specified position; (e)
converting the graphical flow representation into a cor-
responding Boolean algebra statement; and (f) display-
ing the Boolean algebra statement.

[0015] Viewing the present invention from another
aspect, there is now provided a method for use in a
computer system for converting a Boolean algebra
statement representation to a graphical representation
comprising the steps of: a) aranging the Boolean state-
ment into a parse tree wherein each element in the
parse tree has a tree From_Node and a tree To_Node
and each element is a leaf or a non-leaf, and each non-
leaf has a left child and a right child, wherein a leafis a
condition predicate and a non-leaf is an OR operator or
an AND operator; and (b) processing each element of
the tree in preorder traversal to assign each condition
predicate as a graph arc defined as connecting a graph

10

20

25

30

35

40

45

50

55

From_Node to a graph To_Node comprising the steps
of: assigning the root element From_Node and
To_Node as the Beginning_Node and Ending_Node of
the graph; for an OR operator element, assigning an OR
operator element From_Node and To_Node as the
From_Node and To_Node of both of the OR operator
element children: for an AND operator element, creating
a New_Node, assigning the AND operator element
From_Node as the From_Node of the left hand child of
the AND operator element, the AND operator element
To_Node as the To_Node of the right hand child of the
AND operator element, assigning the New_Node as the
To_Node of the left hand child and the from node of the
right hand child of the AND operator element.

[0016] Viewing the present invention from yet
another aspect, there is now provided a method for use
in a computer system for converting a graphical repre-
sentation comprising a plurality of nodes linked by arcs
into a Boolean algebra statement representation, com-
prising the steps of: (a) when two arcs have the same
To_Nodes and From_Nodes, combining the arcs into
one ar¢ with the conditions represented by the original
arcs linked by a logical OR operand; (b) when two arcs
are in a series with a Third_Node in between having the
same two arcs going into and out of it, combining the
arcs into one arc with the conditions represented by
each original arc linked by an AND operator; (c) pushing
onto a stack a graph path; (d) popping a path from the
stack for further processing; (e) processing the path to
produce a Boolean algebra statement segment while
identifying any new paths; (f) pushing a new path onto
the stack: and (g) repeating steps (d) through (f) until
the stack is empty.

[0017] in a preferred embodiment of the present
invention, there is provided computerized database sys-
tem having a central processing unit (CPU), memory, a
display device, and a user interaction device, a method
is provided for retrieving data. At least one table, column
and row are interactively identified containing query
data. The rows are identified by means of a condition
statement. The condition statement is interactively for-
mulated by the following procedure. At least one flowline
is displayed and input is received from the user specify-
ing a position on the flowline for insertion of a predicate
and the predicate. The flowline is displayed with the
predicate inserted in the specified location. The flowline
is converted to a corresponding Boolean algebra state-
ment which is displayed for the user. Additionally, the
user can add a predicate to the Boolean algebra condi-
tion statement. The Boolean algebra statement is con-
verted to the corresponding graphical representation
and displayed for the user. The predicates are displayed
on the flowlines in between nodes. Predicates on the
same flowline are combined through a logical AND
operation. Predicates on different flowlines between the
same nodes are combined through a logica! OR opera-
tion.

[0018) The Boolean algebra text representation is

5 EP 0 616 289 B1 6

converted to the graphical representation by first
arranging the Boolean statement into a parse tree.
Every element of the tree is processed in preordered
traversal where each element in the tree is either a
predicate, an OR operator, or an AND operator and
predicates are leaves and operators are non-leaves
having two children. Each element has a From_Node
and To_Node associated with it corresponding to the
nodes of the directed graph representation. The root of
the parse tree has its From_Node and To_Node
assigned the value of the beginning node and ending
node of the resulting graph. The children of OR operator
elements are assigned the From_Node and To_Node of
the OR operator element. For elements that are AND
operators, a new node is created. The From_Node of
the left child is assigned the From_Node of the AND
operator element. The To_Node of the left child and the
From_Node of the right child are assigned the new
node. The To_Node of the right child is assigned the
To_Node of the AND operator element. For predicate
elements, an arc is created connecting the From_Node
to the To_Node of the element and assigned the predi-
cate.

[0019] The graphical flow representation graph is
converied to the Boolean algebra statement represen-
tation by first compressing the graph and then assigning
the Boolean statement values.

[0020] The graph is compressed from the inside out
down to the fewest rodes and arcs as possible by com-
bining two arcs and replacing the two with one arc with
the resulting Boolean algebra statement as the predi-
cate. When two arcs of the graphical flow representation
graph have the same To_Node and From_Node, the
arcs are combined into one arc with the condition pred-
icates represented by the original arc connected by a
logical OR operation which is assigned to the resulting
arc. When two arcs are in a series with a node in
between and the node only has the two arcs going into
and out of it, then the arcs are combined into one arc
with the condition predicates represented by each origi-
nal arc connected by a logical AND operation which is
assigned to the resulting arc.

[0021] The assignment algorithm identifies unique
paths through the graph from the Starting_Node to the
Ending_Node. The Boolean algebra statement is cre-
ated while the compressed graph is traversed. Each
path through the graph is comprised of a plurality of
predicates combined through a logical AND operation.
The Boolean algebra statement text is constructed by
determining whether an OR or an AND operator needs
to be added to the text statement to correspond to the
graphical representation. Also, the predicate and begin-
ning and ending parentheses are added to the text
statement. An "OR" is inserted into the Boolean text
when a new path has been identified. A stack is used to
store each new path through the graph. When the path
does not go to the end node of the graph an "AND" is
inserted into the Boolean text. After all arcs out of a

10

15

20

25

30

35

40

45

50

55

node have been processed, a new path is popped from
the stack. When the stack is empty, a corresponding
efficient Boolean algebra statement for the graphical
condition is complete.

[0022] It is an object of the invention to provide a
process by which a database user can formulate que-
ries using a graphical representation to illustrate the
flow of the data through condition filters.

[0023] ltis a further object of the invention to pro-
vide a process for consistently translating a condition
statement between a graphical flow representation and
a textual Boolean algebra statement.

[0024]) A preferred embodiment of the present
invention will now be described with reference to the
accompanying drawings, in which:

Fig. 1 is a schematic drawing of the computer sys-
tem,

Fig. 2 is an overview of the query flow process;

Fig. 3 is a flow chart of the query condition modifi-
cation process;

Fig. 4 is an initial row selection window;

Fig. 5 is a graphical condition window fllustrating the
addition of a new path;

Fig. 6 is the graphical window condition of Fig. 5
illustrating the addition of the new path and a NOT
operation;

Fig. 7 is a row selection window with three row
predicates;

Fig. 8 is the row selection window of Fig. 7 with the
predicates in a stacked format;

Fig. 9 is a group selection window;
Fig. 10 is a sort window with sort columns;

Fig. 11 is an overview of the query flow process
with UNION;

Fig. 12 is a flowchart of the compression algorithm;

Fig. 13 is pseudocode of the compression algo-
rithm of Fig. 12;

Fig. 14 is an example of an initial graph and repre-
sentation;

Fig. 15 is the graph of Fig. 14 after arcs have been
combined using the compression algorithm of Figs.
12 and 13;

7 EP 0616 289 B1 8

Fig. 16 is a flowchart of the assignment algorithm;

Fig. 17 is pseudocode of the assignment algorithm
of Fig. 16;

Fig. 18 s a fully compressed graph initialized for the
assignment algorithm;

Fig. 19 is the flowchart of the Boolean algebra to

directed graph algorithm;

Fig. 20 is pseudocode of the Boolean algebra to
directed graph algorithm of Fig. 19;

Fig. 21 is an initial parse tree; and

Fig. 22 is the final arc list for the resulting directed
graph from the initial parse tree of Fig. 21 using the
algorithm of Figs. 19 and 20.

[0025] The query flow process conceptualizes the
query formulation process in terms of the flow of data
through filters which limit what data is to be retrieved.
[0026] The user interface for the query formulation
process used for retrieving data from a database is
implemented in connection with the data processing
apparatus shown in Fig. 1. The apparatus comprises a
central processing unit (CPU) 30, random access mem-
ory 32, input/output port 34, and nonvolatile storage 36
such as disk storage or read only memory (ROM), all
connected to a common bus structure 38. Control cir-
cuitry 40 performs housekeeping operations, such as
providing appropriate clock signals and controlling the
operation of the bus. An adaptor 42 is used to interface
to other components such as a keyboard 44, a visual
display unit 46, and a mouse 48. The general purpose
data processor shown in Fig. 1 is used to perform the
invention under program control.

[0027] Referring to Fig. 2, the formulation of the
query is displayed for the database user as broken into
the sections of table selection, row selection, group
selection and sorting of the data to be refrieved. These
parts are navigated through by the user to provide the
flow of the data through the query.

[0028] A window 50 is displayed for the user on the
display device with icons 52 representing filters that
restrict the flow of data through the query. The user
selects an icon to elaborate on a stage of the query for-
mulation process. In that way, the SQL query window is
a window in which the user can write any SQL query.
Once the SQL query is formulated, it is passed to the
database to retrieve the data.

[0029] The full SQL statement defines the database
tables and columns that form the source of raw data and
the conditions that define those rows of interest from the
defined database tables. The first icon represents table
and column selection which corresponds to the seg-
ment of the SQL statement preceded by the word

10

15

20

25

30

35

40

45

50

55

SELECT. The user selects the table icon 55 in order to
follow a set of procedures for interactively identifying the
tables and columns which provide the query data.
[0030]) After the tables and columns are selected,
the user next formulates the row conditions for specify-
ing the data to be retrieved. The segment of the simple
SQL select statement preceded by the word WHERE
contains the Boolean predicates of the a row condition
for the query data.

[0031] The environment for the creation and manip-
ulation of Boolean predicates as used in SQL for
restricting row selection can be represented as a
directed graph. Referring to Fig. 3, the present invention
provides a representafion to show the relationship
between predicate conditions in a SQL statement
WHERE clause on a display screen in two formats, tex-
tual and graphical. The user can initially enter a graphi-
cal condition 56 by the process discussed below. The
system converts the directed graph representation into
the corresponding Boolean algebra statement 58 by a
process that will be explained below. The user then has
the option of directly changing the Boolean algebra
statement or the graphical representation 60. When
either representation is changed by adding or rearrang-
ing predicates, both representations are updated. The
user also can initially input a Boolean algebra statement
62 and the system converts the statement into the cor-
responding graphical representation 64.

[0032] The user formulates row conditions by
selecting the row condition icon (66 in Fig. 2). Referring
to Fig. 4, the initial window display 70 for the row condi-
tions, when no row conditions are present, is an empty
predicate box 72 on a flowline 74 between two nodes
76.

[0033] The row conditions are graphically displayed
in a flowline directed graph format, indicating that data
tlows through the condition predicates which act as fil-
ters. The flowlines intuitively define AND and OR opera-
tions for predicates, while also adding order-of-
precedence function to the condition. The predicates
are placed in boxes on an arc with connectors or nodes
shown as small squares between the boxes on the flow-
lines. The connectors are used for starting and ending
points when adding new arcs.

[0034] The graphical representation illustrates the
condition statement as a domain considered to flow
through the set of condition predicates, which act as fil-
ters that only et through the domain elements that sat-
isfy the applicable criteria. An AND operation is signified
by placing two filters sequentially so any domain ele-
ment must pass through both fiters. An OR operation is
shown by creating parallel paths separately containing
the filters. The primitives can be combined to produce
complex conditions.

[0035] In Boolean algebra statements, a user must
look at the statement string and match up parentheses
to determine the level of nesting for each condition. With
the graphical representation, the nesting of predicates

9 EP 0 616 289 B1 10

is illustrated in a concise manner.

{0036] Referring to Fig. 5, the graphical condition
window 80 is divided into three areas: a graph area 82,
a text area 84, and a condition area 86. The graph area
is where the graph representing the conditions is
shown. The text area is the Boolean algebra statement
equivalent of the graph. And the condition area contains
a list of all the actual predicates.

{0037] The graph area contains three elements: at
least one or more flowlines 88, nodes 20, and filters 92.
The flowlines define the possible paths for domain ele-
ments to take as they work their way through the graph.
At the flowline coming in from the left hand side, all
domain elements are available. The flowline exiling the
right hand side has the domain elements that have suc-
cessfully traversed the graph. The boxes with condition
predicate text in them are filters. The filters let only
those domain elements that satisfy the condition predi-
cate inside of them pass through. The boxes are on arcs
of a flowline between a pair of nodes. The nodes on
either side of the condition predicate window on the
condition predicate squares serve as starting and end-
ing locations for creating new flowlines.

[0038} The user can modify the set of conditions
two ways, either using the text area or the graph area.
The types of modffications that can be done include
inserting, deleting or updating any part of the set of con-
ditions. Modifications using the text area involves over-
typing the Boolean statement string. The changes to the
Boolean string are displayed on the Boolean string, and
also in the graph area. Modifications using the graph
area allow the user to add new filters and modify exist-
ing filters. New filters can be added as a new flowline
connecting existing nodes which is equivalent to adding
a logical OR operation. Additionally, new filters can be
inserted into an existing flowline which is equivalent to
adding an AND operation.

[0039] A predicate can be combined with ancther
predicate through a logical OR operation by adding a
new flowline to the graph between two existing nodes.
As shown in Fig. 5, the user places the mouse pointer
96 on a node 97 and presses the selection button. While
holding the selection button down, the mouse is moved
off the node. A line 98 appears from the original node to
the mouse pointer, indicating a new path that is being
drawn. Eventually the mouse is moved to another node
and the selection button is released. In this way, a path
can be drawn between two nodes to create the new
flowline.

[0040] Not all nodes are valid for the ending of a
new path depending on the starting node. That is, no
new path may be created that results in a circular path
existing in the graph. A circular path is one in whichiitis
possible to start at a node, traverse the graph and even-
tually end up back at the same node. When the mouse
is over an invalid node, the user is notified that an invalid
flowline would be created.

[0041] Atter the new line is completed, the user is

10

15

20

25

30

35

40

45

50

55

prompted to enter the predicate text assigned to that
arc. The predicate text is placed inside the filter and the
new graph is displayed for the user. Referring to Fig. 6,
the line 98 was drawn to the node 99 following the pred-
icate Y<5 and the predicate Z=20 was added to the
predicate filter box 100. '

[0042]) Predicates can be combined through a logi-
cal AND operation in the graphical representation by
inserting a filter into an existing flowline. The user
places the mouse over the position on the flowline
where the new filter is to be entered and double clicks
the mouse selector button. A new filter is inserted at that
location, and any new nodes that are required by the
new filter are inserted. The user is then prompted for the
predicate text to fill in the filter.

[0043] Referring to Fig. 6, the flowline containing
predicates X>100, C=5, and Y<5 are all combined using
a logical AND operation. When the predicate X>100
was added to the flowline 102, prior o the insertion of
the predicate Z=20, the mouse cursor was positioned
over the node 103 to the left of the predicate B=4, a new
node 97 and predicate filter box 104 were inserted into
the flowline 102 containing predicates B=4 and Y<5,
and the user input the predicate value X>100 in the
predicate box 104.

[0044] There are other methods for interactively
inserting predicates and flowlines that are well known to
those skilled in the art.

[0045] Referring to Fig. 5, the Boolean algebra
statement equivalent of the graphical flow representa-
fion is shown in the SQL clause box 84. After the inser-
tion of the predicate Z=20 in the selected location in the
graphical flow representation, the equivalent Boolean
algebra statement that will be displayed is Z=20 OR
(X>100 AND (A=3 OR {{B=4 OR C=5) AND Y<5))) (par-
tially shown in Fig. 6).

[0046] Predicates can be modified by selecting
them and then selecting the modification functions from
a pop-up menu window. A predicate is selected by
drawing a box around the desired filter using a mouse or
similar user interaction device. More than one predicate
filter can be selected at one time by drawing a box
around all the desired filters. The selected predicate fil-
ters can be edited where the predicate text in the filter
box is changed using a separate window for filling in an
edited predicate text. The filter can also be deleted, at
which time the flowline arc for the filter is also removed.
When the deletion of a filter results in the two nodes that
used to be connected by the flowline arc becoming
unconnected by the deletion of the filter, the nodes are
merged into one node.

[0047] Referring to Fig. 6, the conditions on the
flowline can also be negated by drawing a box 122
around the predicate filter or filters to be negated. To
add a box to indicate negation, a mouse or other user
interaction device is used to select one or more condi-
tion predicates. Next, a negate option is selected froma
menu. After the insertion of the NOT operation to the

" EP 0 616 289 Bt 12

selected section 122 of the flow graph, the resulting
Boolean algebra statement is Z=20 OR (X>100 AND
NOT (A=3 OR ((B=4 OR C=5) AND Y<5)))-

{0048) Only predicate filters that form a valid sub-
graph may be negated together. It is a straightforward
process to determine a valid subgraph based on the
flowlines entering and leaving the set of selected predi-
cate filters. Only one logical flowline can enter the set of
selected filters from the outside non-selected filters, and
only one logical flowline can leave the set of filters. One
logical flowfine is defined as either one actual flowline
entering the set or two or more flowlines entering the set
immediately originating from the same node. One logi-
cal flowline leaving the set is defined in much the same
way. ltis either one actual flowline or all flowlines imme-
diately ending at the same node.

[0049] In the example shown in Fig. 6, the filter
predicates A=3, B=4, C=5 and Y<5 130 are selected,
three flowline arcs 131-133 enter the set of selected fil-
ters, one each to filtters A=3, B=4 and C=5. However,
this is one logical flowline since they all start from the
same node 103. Also, all flowlines leaving the selected
filters end at the same node 99. However, the filter Z=20
could not be included in the NOT operation since the set
would then have four flowline arcs entering, where three
of the flowlines originate from one node 103 while the
fourth flowline enters from a different node 97. Since the
flowlines originate from separate nodes, this is not a
valid subgraph to negate. The negate choice is there-
fore unselectable on the menu.

[0050] Another example of a row condition formula-
tion is illustrated in Fig. 7 where a user wants to restrict
the rows of the query to all managers or commissioned
employees whose total earnings are above $15,000. Ini-
tially, one predicate box appears in the row selection
window. The user inputs the row condition predicate
which is placed in the predicate box. The first predicate
in the example is the restriction on the data to all
employees who earn more than $15,000 140. A second
predicate is then added to restrict the group to employ-
ees who earn a commission 142. Following the proce-
dure for insertion of a new predicate as part of an AND
operation, a second predicate box connector and
prompt panel are provided for the user to enter the pred-
icate for the new filter predicate which in this example is
"COMM not NULL" 144. In order to add the predicate of
the job being a manager 145, a new flowline 146 is cre-
ated.

[0051} Referring to Fig. 8, the user may view the
flow diagram in a stacked format 147 which stacks the
predicates 140, 142 that are connected by the AND
operator.

[0052] The condition formulation process can also
be used for GROUP conditions. Once the user provides
input to the system that forces the generation of groups,
such as placing a summary function as part of the col-
umn selection process, then a group conditions icon
(see 148 in Fig. 2) appears along with additional text

10

15

20

25

30

35

40

45

50

55

under the row selection icon. For example, when the
user selects the columns, depariment, job, and average
salary from a table, the top level query window (Fig. 2)
shows the flow of data as being from table selection,
into row selection for groups, into group selection, into
sorting.

[0053] Inside the row selection window, the group-
ing column information is shown on the right hand side
of the window. Nothing in the grouping column section
can be directly updated. To change the grouping col-
umns, the user must go back and select or delete col-
umns included in the query. Selecting the group
selection icon causes a window (see Fig. 9) to be dis-
played showing a flowchart condition format. The left
hand side of the group selection window 120 has infor-
mation about which overall aggregate functions are
computed. The list displays for the user what functions
are being evaluated for the query and helps in the con-
tinuity of the flow from the row selection window.

[0054] The process for formulating conditions for
groups is the same as for any conditions except that the
group selection prompt panel has information about
summary functions.

[0055] Following the selection of the table and col-
umns for the query data and the formulation of the con-
dition for the row or group selection, the next step in the
query formulation process is the sorting of the query
data. The sorting function window initially displays only
a flowline and connectors. The user adds a sort column
by placing the mouse cursor over the connector and
pressing the mouse bution. The user then drags the
connector either above the line for ascending order or
below it for descending order and releases the mouse
button. A sort box appears on the selected side of the
line, along with a list box that has all the selectable col-
umns for sorting. After the user selects a column from
the list box, it is displayed in the sort box.

{0056] Referring to Fig. 10, the user has selected
sorting first by depariment name in ascending order and
then by employee name in descending order. After
department name was selected from a list box of col-
umns and placed in the sort box 160, additional connec-
tors 162 were displayed so that additional sort boxes
could be created on either side of the existing sort box
164. The connector to the right of department name
was selected and dragged downwards for the employee
name sort. The order of precedence for sorting reads
from left to right. Any sorts on the left of any other sort
gets applied before the right hand sorts, so that the sort
by descending employee name is less significant than
the department name sort.

[0057] The formulation of queries involving the
UNION operation between two or more sub-queries
uses an initial query flow window shown in Fig. 11. The
selected rows of data are combined by a UNION func-
tion 172 and then sorted 174. The UNION operation is
selected from an action bar pulkdown menu in the
graphical query overview window. When the UNION

13 EP 0 616 289 B1 14

operation is selected, the query flow diagram as in Fig.
11 is displayed as part of the overview window. The user
enters the table, column, and row selections for the que-
ries by expanding the icons to specify query details.
After the tables and columns are selected for a second
query, the selected columns are verified against the first
query to make sure the number of columns and their
data types match, which is required for SQL UNION
operation. After the row selections are made for each
query, the query data are combined by a UNION opera-
tion.

[0058} The directed graph of the graphical flow rep-
resentation for the row conditions is displayed as a
Boolean algebra statement so that the user can view
the row conditions in both formats for greater under-
standing. The directed graph is converted to a Boolean
algebra statement using the algorithm in Figs. 13 and
17. The Boolean statement is converted to a directed
graph using the algorithmin Fig. 20.

[0059] In general, a graph is a set of one or more
nodes connected by zero or more arcs. Pictorially,
nodes can be represented by squares, while arcs can
be represented by lines connecting the squares. The
identification for the nodes can be placed inside the
squares. Arcs can be identified by a name placed by the
line or by referring 1o the two nodes that the arc con-
nects. A graph can be defined as either a list of nodes or
a list of arcs.

{0060] A directed graph is a subset of a graph
where the arcs indicate direction. Pictorially directed
graphs are shown by means of arrows on the arcs. In
the list format, directed graph arcs have From_Nodes
and To_Nodes listed. A further subset of directed
graphs are ones that have only one starting node and
one ending node and no circular path.

[0061] it is possible to have a directed graph that
has no Boolean condition that is exaclly equivalent.
However, it is always possible to generate a Boolean
condition that is logically equivalent.

[0062] In this invention, the graphical flow represen-
tations are directed graphs with no circular paths. The
actual conditions are represented by the arcs, whereas
the nodes are placed according to the structure of the
AND and OR statements in the conditions.

[0063] This invention converts the directed acyclic
graph of the query flow representation to the corre-
sponding Boolean algebra statement by first using a
compression algorithm as shown in Figs. 12 and 13.
The graphs are compressed from the inside out, down
to as few nodes and arcs as possible. The compression
algorithm always tries to combine two arcs and replace
it with one arc. When two arcs have the same To_Nodes
and From_Nodes 180, the arcs are combined into one
arc, with the condition represented by each original arc
connected by a logical OR operation 181. When two
arcs are in a series with a third node in between, and the
third node only has those two arcs going into and out of
it 182, then the arcs are combined into one arc with the

10

15

20

25

30

35

40

45

50

55

condition represented by each original arc connected by
a logical AND operation and the intervening third node
is eliminated 183.

[0064] The goal is to compress the graph down to
only two nodes and one arc, which is a completely
reduced graph. However, in some cases, the graph can-
not be completely compressed. After the graph is com-
pressed to its minimum number of nodes and arcs, the
graph is converted to a Boolean algebra statement
using an expansion and assignment algorithm.

[0065] The compression algorithm can be turther
explained using the simple graph shown in Fig. 14. The
graph 184 consists of four nodes (A, B, C and D) 185
and five arcs (1 through 5 with predicates P1 through
P5, respectively, assigned to each arc) 186. For each
node in the graph, the following information is stored in
a table 187: the number of arcs going into the node 188,
the number arcs going out from the node 189, the list of
the arcs going into the node 190, and the list of arcs
going out from the node 191.

[0066] During the processing shownin Figs. 12 and
13, the node table (185 in Fig. 14) is processed in a loop
194, with each iteration trying to combine arcs. The loop
is terminated when one complete pass through the
node array results in no arcs being combined 196.
Where two arcs go out of the same first node and into
the same second node 180, the predicate values are
combined with an OR operator and assigned to the first
arc, and references to the second predicate are
removed 181. For nodes where only one arc goes into
the node and one arc comes out of the node 182, the
predicate values are combined by an AND operation
and assigned to the arc going into the node, and that arc
is assigned to go into the node of the second arc 183.
[0067] In processing the example graph shown in
Fig. 14 (according to the algorithm of Figs. 12 and 13),
the first iteration skips nodes A and B since neither meet
the criteria for compression. However, since node C has
more than one arc going into it (197 in Fig. 13), the list
of arcs going into it (arcs 1, 2 and 5) are each examined
181. Since arcs 1 and 2 both go out from the same node
the predicates are connected by an OR operator and
assigned to arc 1. All references to arc 2 are deleted.
Next, since node D has an in arc count of 1 and out arc
count of 1, it is removed. The predicates of the two arcs
going into and out of node D are combined by an AND
operator and assigned tfo the first arc. The first arc
To_Node is updated with the To_Node of the second arc
and the second arc is deleted.

[0068] Since changes were made during the last
iteration or pass (arcs 1, 2 and 4, 5 combined) another
pass of the node array is performed. At the end of the
first pass, Node A has zero arcs going into it and two
arcs (arcs 1 and 4) going out, Node B has one arc (arc
3) going into it and zero going out of it, Node C has two
arcs (arcs 1 and 5) going into it and one arc (arc 3)
going out of it. Node D has been deleted. Arc 1 has the
predicate (P1) OR (P2) assigned to it, arc 2 has been

'

15 EP 0 616 289 B1 16

deleted, arc 3 has the predicate P3 assigned to it, and
arc 4 has the predicate (P4) AND (P5) assigned to it.
[0069] On the second pass, Node C is examined
because it has an in arc count greater than one. Exam-
ining the list of arcs going into Node C shows that both
arcs 1 and 4 have the same From_Node, Node A.
Therefore, the two arcs, 1 and 4, are combined with an
OR operation. At the end of the second pass, Node A
has zero arcs going into it and one arc (arc 1) going out,
Node B has one arc (arc 3) going into it and zero arcs
going out of it, Node C has one arc (arc 1) going into it
and one arc (arc 3) going out of it. Arc 1 has the predi-
cate ((P1) OR (P2)) OR ((P4) AND (PS5)) assigned to it,
arc 3 has the predicate P3 assigned to it, and arc 4 has
been deleted.

[0070] On the next loop of the node array, Node C
has an in arc count of one and an out arc count of one.
The arcs going into and out of Node C are combined by
an AND operator. The result of this compression opera-
tion is a reduced graph down to the minimum possible
graph of two nodes and one arc, 200 in Fig. 15. There
are two nodes A and B and the predicate assigned to
the arc AB is ((P1) OR (P2)) OR ((P4) AND (P5)) AND
(C5).

[0071] The foregoing example is not always the sit-
uation. The graph 201 shown in Fig. 18 is an example of
a graph where the node and arc arrays cannot be com-
pressed any further, but it has not been reduced to two
nodes and one arc.

[0072] The assignment algorithm in Figs. 16 and 17
assigns the corresponding Boolean algebra statement
regardless of whether the compressed graph is fully
reduced.

[0073] The assignment or expansion algorithm tries
to find each unique path through the graph from the
starting node to the ending node. The graph itself is not
manipulated any further. instead, the Boolean text
string is created while the graph is being traversed.
Since only one path can be traversed at a time, a stack
is used to keep track of each new path through the
graph. When the stack is empty, no more paths are 1o
be processed; and the Boolean condition is complete.
The expansion algorithm traverses each path through
the graph building the Boolean algebra statement string
along the way. The algorithminserts part of the text into
the main string a piece at a time. The list of places that
need to have text inserted is kept on the stack.

[0074} When a graph has been reduced down to
two nodes and one arc such as the compressed graph
in Fig. 15, the expansion algorithm has little to do since
only one possible path exists from start to end.

[0075]) Referring to Figs. 16 and 17, the first step is
the initialization of the variables for the expansion algo-
rithm 205. Two of the variables are the start node (the
starting node of the graph) and the end node (the end-
ing node of the graph). The start and end nodes can be
determined from the in and out arrays used in the com-
pression algorithm. The start node has an in-arc-count

10

15

20

25

30

35

40

45

50

55

of zero and an out-arc-count of greater than zero. The
end node has an in-arc-count greater than zero and an
out-arc-count equal to zero. Ancther variable the
Boolean Text, is the text string that holds the Boolean
algebra statement. The text variable has an initial value
of null.

[0076] A stack holds the pair of items, a node value
and a text position pointer. The node represents where
in the graph the current process is active, while the posi-
tion pointer is where the insertion into the text string is
occurring. The start node and a place value indicating
the start of the text is initially pushed onto the stack.
[0077) After initialization is complete, the graph is
continually processing nodes stored in the stack until
the stack is empty. The top values are popped from the
stack and placed into the variable’s curent node and
current place and the arc count is set to zero 207. For
each arcin the graph, if the From_Node for the arc is the
same as the current node, then the arc count is incre-
mented by one 208. if the arc count is greater than one,
then the text "OR" is inserted into the Boolean text at the
location defined by the place variable, and the place
variable is incremented to point after the inserted text
209. When the To_Node for the arc is not the same as
the end node (the arc does not go to the end node), then
a begin parenthesis (" is placed into the Boolean text at
the location defined by the place variable and the cur-
rent place is incremented so it points after the inserted
text 210. The predicate text assigned to the arc is
inserted into the Boolean text at the location defined by
place, and the place is incremented to after the insertion
211. If the To_Node for the arc is not the same as the
end node, then the text AND and a begin parenthesis is
placed into the Boolean text at the location defined by
place, and the place variable is incremented to after that
text position; the arc's To_Node and the place variable
are pushed onto the stack; and the text of two end
parentheses "))" is also added to the text at the location
of the place variable and the place counter variable is
incremented 212.

[0078) The expansion algorithm can be further
explained using the example in Figure 18 showing a
fully compressed graph 201. In the example, there are
four nodes, A, B, C, and D 213 and five arcs 1 through 5
with predicates P1 through P5, respectively, assigned to
each arc 214. As listed in the node array 215 (and
shown in the graph 201), Arc 1 goes from Node A to
Node C, Arc 2 goes from Node C to Node D, Arc 3 goes
from Node A to Node D, Arc 4 goes from Node C to
Node B, Arc 5 goes from Node D to Node B. From look-
ing at the arcs into nodes and arcs going out of the
nodes it can be determined that node A is the starting
node and node B is the ending node. The stack 216
after initialization holds node A and the value for the
position variable {also called "Place”) of 1.

[0079] Node A and the Place value of 1 are popped
off the stack. The arc list is searched for any arcs that
have Node A as the From_Node and the first arc, Arc 1,

17

is identified. The Arc count variable is incremented one.
Since the To_Node of Arc 1, Node C, is not the end
node, Node B, a left parenthesis is added to the text at
the position of Place (210 in Fig. 16). Next, the actual
predicate text associated with Arc 1, P1, is placed into
the string text variable at the position of Place (211 in
Fig. 16). Next the word AND is added along with the left
parenthesis. The To_node of arc 1, Node C, and thecur-
rent value of Place (right after the AND and left paren-
thesis), is pushed onto the stack. Finally, two right
parentheses are placed into the string and the Place
variable incremented to that position (212 in Fig. 16). At
the end of the first iteration, the Boolean text has the
value of "(P1 AND ())" and the current value of Placeis
following the right most end parenthesis; also, the Node
C and the Place value following the "AND (" were
pushed onto the stack.

[0080] The process continues identifying more arcs
having node A as the From_Node (220 in Fig. 16) and
Arc 3 (P3) is identified. The arc count variable is incre-
mented to two (indicating that the current node has two
arcs out of it, which means that there is an OR operation
between the predicates on the arcs. The text "OR" is
placed in the string at the current place (after the right
most parenthesis). Since the To_Node of Arc 3, Node D,
is not the end node, the same thing is done as for the
previous arc, arc 1. That is, at the end of this iteration
the Boolean text is "(P1 AND ()) OR (P3 AND ()" (P3
being the predicate assigned to Node D) where the
Place variable is at the end of the right most parenthesis
and the stack has Node D and the position pointer
(Place) following the string "P3 AND (" pushed onto itin
addition to the Node C and Place value following "P1
AND (.

[0081] Since no other arcs have the current node,
Node A, as the From_Node, a new node is popped from
the stack, Node D, and a new Place pointer value, fol-
lowing the text "P3 and (", are assigned as the current
Node and Place values. There is only one arc with Node
D as its the From_Node, Arc 5. Since the To_Node of
Arc 5 is the end node, Node B, all that is done is the
addition of the predicate text assigned to Arc 5 to the
text variable at the location of the current Place. At the
end of this iteration, the text string is "(P1 AND ()) OR
(P3 AND (P5))" and the stack still has Node C and the
Place value following "P1 AND (.

[0082] The stack is popped again to get the value
for the current Node of Node C and the place value fol-
lowing the text segment "P1 AND (". The first arc found
with the Node C as its From_Node is Arc 2. Arc 2 has
Node D as its To_Node {which is not the end node). The
arc count for the current Node has the value of one and
the predicate P2 is assigned to arc 2. The process is
similar as before. The resulting text string is "(P1 AND
((P2 AND ()))) OR (P3 AND P5)) with the Place pointer
pointing after "())". The stack contains Node D and the
Place value pointing to the position after "P2 AND (.
The next arc with Node C as its From_Node is Arc 4 with

EP 0616 289 B1

10

15

20

25

30

35

40

45

50

55

10

18

the predicate P4 assigned to it. The arc count is incre-
mented to two. The To_Node of Arc 4 is the end node,
Node B. The resulting text string after this iteration is
"P1 AND ((P2 AND ()) OR (P4)) OR (P3 AND (P5))".
[0083] Since there are no other arcs with Node C as
its From_Node, the stack is popped and the current
Node is Node D and the current Place is the position
after "P2 AND (". The only arc with Node D as its
From_Node is Arc 5 with the predicate PS assigned to it.
Since the arc count is one and the To_Node of Arc 5 is
the end node. The only operation to be done is inserting
PS at the current place position. The resulting text is "P1
AND ((P2 AND (P5)) OR (P4)) OR (P3 AND (P5))".
After Node D is processed, the loop terminates because
the stack is empty and the final text value for the
Boolean algebra statement has been completed.
[0084]) The expansion graph algorithm could be
used on its own without the compression algorithm.
However, the Boolean text that is created does not
always produce a Boolean algebra statement that is the
exact mapping of the graph. For example, the same
graph where text output from the expansion graph is:
((C1) AND (C3)) OR (C2 AND C3) has the text output
from the expansion algorithm after going through the
compression algorithm of: (C1 or C2) and C3. The latter
Boolean expression is a more efficient representation
and more of an exact franslation from the corresponding
graph.

[0085) The Boolean algebra statement is converted
to the graphical flow representation using the Boolean
statement to directed graph algorithm in Figs. 19 and
20. The algorithm takes a textural Boolean statement
such as (X > 1) AND (Y = 2) and produces a coire-
sponding directed graph. The directed graph can then
be displayed or modified by other methods.

[0086] There are two parts to the algorithm. The
first part is creating a parse tree of the Boolean expres-
sion 230 and the second part is the graph creation algo-
rithm using the parse tree 232. The parse tree consists
of leaves and non-leaves. One non-leaf is the root ele-
ment. All Non-eaves have two children, a left child and
a right child. Each element in the parse tree is either a
predicate, an OR operator, or an AND operator. The
leaves on the tree are always predicates while non-
leaves are operators. The creation of the parse tree is
known methodology and will not be explained in detail
here. After the parse tree is created, the tree is tra-
versed creating the nodes and arcs that make up the
directed graph.

[0087] The graph creation algorithm begins by
assigning a To_Node and From_Node value to the root
of the tree 234. Then the algorithm processes every ele-
ment in the tree by preordered traversal.

[0088] When the element represents a predicate
such as X > 1, then an arc is created connecting the ele-
ment's From_Node to its To_Node by an arc having the
element's predicate assigned to it 236. The From_Node
and To_Node were assigned when processing the ele-

19

ment's parent connector. When the element represents
an OR operator, the element's From_Node and
To_Node are assigned as From_Node and To_Node for
both of the element's children 238. In that way, when the
child elements are processed, their To_Node and
From_Node values have already been assigned. When
the element represents an AND operator, then a new
node must be created in between the current
From_Node and To_Node. The left-hand child has its
From_Node set to the same as the From_Node of this
operator. The new node is assigned as the child’s
To_Node. This same new node is also assigned to be
the right child’s From_Node. The right child’s To_Node
is the same as the To_Node of the operator 240. This
has the effect of inserting a new node between the ele-
ments. In that way, all child elements of AND operators
have their To_Node and From_Node values assigned.
[0089] The conversion of a parse tree of a Boolean
statement to a directed graph can be further explained
with reference to the parse tree 250 in Fig. 21. The
parse tree 250 corresponds to the Boolean statement of
A<1 or (B<2 and C<3).

{0090} The first step is fo initialize the To_Node and
From_Node fields of the root element in the tree, "OR".
The root nodes’ To_Node and From Node are the begin-
ning node and ending node of the graph (Node 1 and
Node 2). Next, a preorder traversal is made of the free.
[0091} A preorder traversal will visit the root ele-
ment and then the other elements in numeric order as
listed in Fig. 21. The first element is the root 251, the
second element is root's the left child 252 (since the
root's left child has no children), the third element is the
root's right child 253, the fourth element is the left child
of the root's right child 254, and the fifth element is its
right child 255. So, the first element is the root "OR", the
second element is A<1, the third is "AND", the fourth is
B<2, the fitth is C<3.

[0092] The children of the first element 252 and
253, and the OR operator 251 have their To_Node and
From_Node assigned the OR operator's To_Node and
From Node values. So, the To_Nodes and From_Nodes
of elements two and three, are each assigned Node 1
and Node 2, respectively.

[0093] The next element traversed is the second
element 252 which is a predicate with no children. An
arc is created with the elements From_Node and
To_Node, Node 1 and Node 2, and the resulting arc is
assigned the element's predicate, A<1 (260 in Fig. 22).
[0094] The next element, element three 253, is an
AND operator. The From_Node of the left child 254 gets
this element's From_Node (which is Node 1) and the
To_Node of the right child 255 gets this element's
To_Node (which is Node 2). A new node is created to be
the left chid's To_Node and the right child's
From_Node. The new node is Node 3.

[0095] The next element, element four 254, is a
predicate. An arc is created from this element
From_Node to its To_Node (from Node 1to Node 3) and

EP 0 616 289 B1

10

20

25

30

35

40

45

50

55

1

20

the resulting arc is assigned the element's predicate,
B<2 (262 in Fig. 22). The remaining element, element
five 255, is also a predicate. An arc is created from the
element's From_Node, Node 2, to its To_Node, Node 3
and the resulting arc is assigned the element's predi-
cate, C<3 (264 in Fig. 22). The resulting graph is the arc
list 266 in Fig. 22.

[0096] The graphical flow representation is dis-
played on the display device using a spacing algorithm.
The input for the spacing algorithm is a list of node and
predicate arc pairs (produced by the conversion of the
Boolean statement to the directed graph). The list of
pairs represents a graph of connecting nodes where
each connection is described by the predicate text. The
algorithm spaces the nodes and corresponding links so
that the overlap of paths and the total area covered by
the nodes is minimized. This can be illustrated with the
following example where there are three nodes.
Between nodes 1 and 2 there is a predicate called SAL-
ARY>2000 and another predicate called SALARY<500.
Between nodes 2 and 3 there is a predicate called
JOB=MGR and another predicate called JOB=COOK.
[0097] The algorithm produces from this list two
subsequent lists; the first of these is called the node list
and the second is the predicate list. The node list con-
tains a list of node objects, each object having a position
value. The predicate list contains a list of predicate
objects each of which has the position value.

[0098] In general, the algorithm calculates the long-
est path through the node path, figures out the place-
ment of the nodes on the longest path, the placement of
the conditions on the longest path, the placement of
remaining nodes on the remaining paths, and place-
ment of remaining conditions on the remaining paths.
[0099] The longest path is calculated by every valid
input list containing a description of a chain of nodes
linked together via conditions forming in some cases a
multitude of paths. Each path starts at the head node
(normally 1) and ends at the tail node (normally n),
where n is the count of nodes. The longest path is that
path or paths originating at the head node and terminat-
ing at the tail node, which traverses through the most
nodes.

[0100] Using the example and starting with those
node pairs which have node 1 as their entry node value,
there are two candidates; namely, node 1 to node 2
{SALARY>2000) and node 1 to node 2 (SALARY<500).
The first of these nodes can be chosen and the exit
node value of 2 is used to form a similar list from the
overall predicate pair list giving node 2 to node 3
(JOB=MGR) and node 2 to node 3 (JOB=COOK). The
two predicate pairs are supplied which have the value 2
as their entry node value. The first of these is used and
the path is followed through to find an exit value equal to
3 which is the tail node. The end of the path is reached
going through two predicates giving a path length of 2.
This can be used to determine the longest path for a
given set of data.

21 EP 0 616 289 B1

[0101] The next step is the placement of the nodes
on the longest path. Given the list of nodes which repre-
sent the longest path for a given sample data set, posi-
tions are assigned to those nodes found on that longest
path. Staring with an arbitrary position by default
(100,100) where this number pair will be related to a
point on the screen, a special constant is added to the
first value for each node in the longest path. This special
constant is the length of the longest predicate character
string found in the sample data muttiplied by the number
of points a given character takes on the screen.

[0102] The next step is the placement of the predi-
cates on the longest path. Predicates which have entry
and exit nodes which have been assigned position val-
ues are now assigned a position themselves. For the
simple case where only one predicate exits with a par-
ticular entry and exit node pair, the assignment is based
on the midpoint between the two points assigned. When
a pair of nodes are used by two or more predicates for
their entry and exit node values, the assignment
requires an extra step which involves adding a constant
to the second value attached to the midpoint of a given
entry/exit node pair. Further predicates are placed by
adding the same constant to the prior value. The
assignment procedure is repeated until all predicates
situated on the longest path have been positioned.
[0103] The next step is the placement of the
remaining nodes not on the longest path. The previous
three steps have defined an envelope of space used by
the longest path. Any remaining nodes not on the long-
est path are assigned position values based on the
envelop of space. The procedure is straightforward. The
entry node's first value is added to the special constant
and the envelope's maximum height is used as a sec-
ond value plus the high constant, giving a position which
can be used for any remaining nodes. Each subsequent
assignment of a position to a predicate expands the
overall envelope of space attached to the sampie data.
To help minimize the occurrence of cross paths in the
generated position of nodes and predicates, a flip com-
ponent is used in the assignment of all nodes and pred-
icates not found on the longest path. This flip
component has the effect of placing each alternate
node list on opposite sides of the longest path.

[0104] The final step is the placement of the
remaining conditions on the remaining paths. This step
makes use of the procedure of the previous step for
placement of conditions on the longest path with the
variation that the existing space envelope and flip com-
ponent are taken into account for each placement as
well as the nodes involved not being on the longest
path.

Claims
1. A method for interactively formulating queries for

retrieving data stored in tables having columns and
rows in a computerized database system having a

15

20

25

30

35

40

50

55

12

22

central processing unit (CPU), memory, a display
device, and a user interaction device, the method
comprising the steps of:

receiving input identifying at least one table
containing the query data;

receiving input identifying at least one column
of the identified table containing the query
data;

receiving input identifying at least one row in
the identified table containing the query data
using a condition statement and characterised
in that said condition statement is interactively
formulated by the steps of.

(a) displaying a graphical flow representa-
tion comprising at least one flowline com-
prising at least one arc, a predicate
assigned to each arc, and a plurality of
nodes, each arc positioned between a
From Node node and a To_Node node,
wherein predicates on the same flowline
are combined through a logical AND oper-
ation, and predicates on different flowlines
between the same nodes are combined
through a logical OR operation;

(b) receiving input specifying a position on
a flowline of the graphical flow representa-
tion for insertion of a predicate;

(c) receiving input of the predicate;

{d) displaying the graphical flow represen-
fation with the predicate inserted in the
specified position;

(e) converting the graphical tlow represen-
tation into a corresponding Boolean alge-
bra statement; and

(f) displaying the Boolean algebra state-
ment.

2. A method as claimed in claim 1 further comprising
the steps of:

receiving input from the user adding a predi-
cate to a Boolean algebra statement;
converting the Boolean algebra statement to a
corresponding graphical flow representation;
and

displaying the graphical flow representation.

3. A method as claimed in claim 1 comprising the fur-
ther steps for converting a graph that is a graphical
flow representation to a Boolean algebra statement
comprising the steps of:

23 EP 0 616 289 B1 24

(a) compressing the graph to a minimum
number of nodes and arcs by combining 2 arcs
and replacing said arcs with one single arc, o
produce a compressed graph, this combining
of 2 arcs being achieved by

combining each pair of arcs having the
same To_Nodes and From Nodes into a
resulting arc with the predicates assigned
to the pair of arcs connected by a logical
OR operator assigned as a resulting predi-
cate to the resulting arc; and

combining each pair of arcs having the
same To_Node of a first arc and
From_Node of a second arc into a resuit-
ing arc with the predicates assigned to the
pair of arcs connected by an AND operator
assigned as a resulting predicate to the
resulting arc.; and

(b) creating a comresponding Boolean algebra
string by identifying at least one path through
the compressed graph from a beginning node
to an ending node.

4. Amethod as claimed in claim 3 wherein the step of

creating a corresponding Boolean algebra string
further comprises the steps of:

{a) pushing onto a stack a graph path;

(b) popping a path from the stack for further
processing;

(c) processing the path to produce a Boolean
algebra statement segment while identifying
any new paths,

(d) pushing a new path onto the stack; and

{e) repeating steps (b) through (d) until the
stack is empty.

A method as claimed in claim 2 comprising the fur-
ther steps for converting a Boolean algebra state-
ment representation to a graphical flow
representation of:

(a) arranging the Boolean algebra statement
into a parse tree comprising a plurality of ele-
ments including a root, each element being a
leaf or a non-leaf, each non-leaf having a left
child and a right child, and each element hav-
ing a value assigned for a From_Node and a
To_Node, wherein each leaf is assigned a
predicate and each non-leaf is assigned an OR
operator, or an AND operator; and

5

10

15

20

25

30

35

40

45

50

55

13

{b) processing each element of the tree in pre-
order traversal assigning each predicate as an
arc connecting a From_Node to a To_Node.

6. A method as claimed in claim 5 wherein the

processing of each element comprises the steps of:

assigning the root From_Node and To_Node a
beginning node and an ending node, respec-
tively, of a resulting graph;

for each OR operator element, assigning the
OR operator element From_Node and
To_Node as the From_Node and To_Node,
respectively, of the left child and right child of
the OR operator element;

tor each AND operator element:

creating a new node;

assigning the AND operator element
From_Node as the From_Node of the left child
of the AND operator element;

assigning the new node as the To_Node of the
left child and the From_Node of the right child
of the AND operator element; and

assigning the AND operator element To_Node
as the To_Node of the right child of the AND
operator element; and

for each predicate element, creating an arc
connecting the From_Node to the To_Node of
the predicate element and assigning the predi-
cate to the arc.

7. A method as claimed claim 1 further comprising the

step of interactively designating a section of the
graphical flow representation as having a logical
NOT operation applied to the section.

A method for use in a computer system for convert-
ing a Boolean algebra statement representation to
a graphical representation comprising the steps of:

(a) arranging the Boolean statement intfo a
parse tree wherein each element in the parse
tree has a tree From_Node and a tree To_Node
and each element is a leaf or a non-leaf, and
each non-leaf has a left child and a right child,
wherein a leaf is a condition predicate and a
non-leaf is an OR operator or an AND operator;
and

(b) processing each element of the tree in pre-
order traversal to assign each condition predi-
cate as a graph arc defined as connecting a
graph From_Node to a graph To_Node com-
prising the steps of:

assigning the root element From_Node
and To_Node as the Beginning_Node and
Ending_Node of the graph;

25 EP 0 616 289 B1 26

for an OR operator element, assigning an
OR operator element From_Node and
To_Node as the From_Node and To_Node
of both of the OR operator element chil-
dren;

for an AND operator element, creating a
New_Node assigning the AND operator
element From_Node as the From_Node of
the left hand child of the AND operator ele-
ment, the AND operator element To_Node
as the To_Node of the right hand child of
the AND operator element, assigning the
New_Node as the To_Node of the left hand
child and the From_Node of the right hand
child of the AND operator element.

A method for use in a computer system for convert-
ing a graphical representation comprising a plurality
of nodes linked by arcs into a Boolean algebra
statement representation, comprising the steps of:

(a) when two arcs have the same To_Nodes
and From_Nodes, combining the arcs into one
arc with the conditions represented by the orig-
inal arcs linked by a logical OR operand,

(b) when two arcs are in a series with a
Third_Node in between having the same two
arcs going into and out of it, combining the arcs
into one arc with the conditions represented by
each original arc linked by an AND operator;

(c) pushing onto a stack a graph path;

(d) popping a path from the stack for further
processing;

(e) processing the path to produce a Boolean
algebra statement segment while identifying
any new paths;

{f) pushing a new path onto the stack; and

() repeating steps (d) through (f) until the
stack is empty.

10. A computer system comprising: a central process-

ing unit, a memory, a display device, a user interac-
tion device, and means configured to carry out the
steps of a method as claimed in any preceding
claim.

Patentanspriche

Verfahren fur die interaktive Erzeugung von Abfra-
gen far den Anruf von Daten, die in Tabellen mit
Spalten und Zeilen in einem computergestutzten
Datenbanksystem gespeichert sind, das eine Zen-

10

15

20

25

30

35

40

45

50

55

14

. traleinheit (CPU), einen Speicher, eine Anzeigeein-

heit und eine Benutzerinteraktionseinheit
beinhaltet, wobei das Verfahren die folgenden
Schritte umfasst:

Empfangen einer Eingabe, die mindestens
eine Tabelle angibt, die die Abfragedaten ent-
halt;

Empfangen einer Eingabe, die mindestens
eine Spalte der angegebenen Tabelle angibt,
die die Abfragedaten enthalt;

Empfangen einer Eingabe, die mindestens
eine Zeile der angegebenen Tabelle, die die
Anfragedaten enthalt, angibt, unter Verwen-
dung einer Bedingungsanweisung und
dadurch gekennzeichnet, dass die Bedin-
gungsanweisung durch die folgenden Schritte
interaktiv erzeugt wird:

{a) Anzeigen einer grafischen Daten-
flussdarstellung, die mindestens eine Flus-
slinie umfasst, welche mindestens einen
Bogen, ein Pradikat, das einem jeden
Bogen zugewiesen ist, und eine Vielzahl
von Knoten umfasst, wobei jeder Bogen
zwischen einem Knoten From_Node und
einem Knoten To_Node positioniert ist,
wobei Pradikate auf der gleichen Flusslinie
durch eine logische UND-Operation ver-
knipft werden und Pradikate auf verschie-
denen Flusslinien zwischen den gleichen
Knoten durch eine logische ODER-Opera-
tion verkniipft werden.

(b) Empfangen einer Eingabe, die eine
Position auf einer Flusslinie der grafischen
Datenflussdarstellung fur die Einfdgung
eines Pradikats angibt;

(c) Empfangen einer Eingabe des Pradi-
kats;

(d) Anzeigen der grafischen Daten-
flussdarstellung mit dem Pradikat, das an
der angegebenen Position eingefiigt
wurde;

(e) Umwandeln der grafischen Daten-
flussdarstellung in eine entsprechende
Boolesche Algebraanweisung; und

{f) Anzeigen der Booleschen Algebraan-
weisung.

2. Verfahren nach Anspruch 1, das weiter die folgen-

den Schritte umfasst:

+

27 EP 0 616 289 B1 28

Emptangen einer Eingabe des Benutzers, die
ciner Booleschen Algebraanweisung ein Pradi-
kat hinzufagt;

Umwandeln der Booleschen Algebraanwei-
sung in eine entsprechende grafische Daten-
flussdarstellung; und

Anzeigen der grafischen Datenrlussdarstel-
lung.

3. Verfahren nach Anspruch 1, das weiter die Schritle
fir die Umwandlung eines Graphen, der eine grafi-
sche Datenflussdarsteliung einer Booleschen Alge-
braanweisung ist, umfasst und die folgenden
Schritte umfasst:

(a) Verdichten des Graphen auf eine Mindest-
anzahl von Knoten und Bégen, indem zwei
Bogen verknapft werden und die Bogen durch
einen einzelnen Bogen ersetzt werden, um
einen verdichteten Bogen zu erzeugen, wobei
die Verknupfung von zwei Bogen erzielt wird
durch

die Verknipfung eines Bogenpaars mit
den gleichen To_Nodes und From_Nodes
zu einem resultierenden Bogen, wobei die
Pradikate, die dem Bogenpaar zugewie-
sen wurden, durch einen logischen ODER-
Operator verbunden sind, der als ein resul-
tierendes Pradikat dem resultierenden
Bogen zugewiesen wird; und

die Verkniipfung eines jeden Bogenpaars
mit dem gleichen To_Node eines ersten
Bogens und From_Node eines zweiten
Bogens in einen resulierenden Bogen,
wobel die Pradikate, die dem Bogenpaar
zugewiesen wurden, durch einen UND-
Operator verbunden sind, der als ein resul-
tierendes Pradikat dem resultierenden
Bogen zugewiesen wird; und

(b) Erzeugen einer entsprechenden Zeichen-
kette Boolescher Algebra, indem mindestens
ein Pfad durch den verdichteten Graphen von
einem Startknoten zu einem Endknoten ange-
geben wird.

4. Verfahren nach Anspruch 3, wobei der Schritt der
Erzeugung einer entsprechenden Zeichenkette
Boolescher Algebra weiter die folgenden Schritte
umfasst:

(a) Auflegen eines Graphenpfads auf einen
Stapelspeicher;

10

20

25

30

35

40

45

50

55

15

{b) Abheben eines Pfads von einem Stapel-
speicher fir die weitere Verarbeitung;

(c) Verarbeiten des Pfads, um ein Segment
einer Booleschen Algebraanweisung zu erzeu-
gen, wahrend eiwaige neue Piade ermittelt
werden;

{d) Auflegen eines neuen Pfads auf den Stapel-
speicher; und

() Wiederholen der Schritte (b) bis (d), bis der
Stapelspeicher leer ist.

5. Verfahren nach Anspruch 2, das weiter die folgen-
den Schritte far die Umwandlung der Darstellung
einer Booleschen Algebraanweisung in eine grafi-
sche Datenflussdarstellung umfasst:

(a) Anordnen der Booleschen Algebraanwei-
sung in einem Analysebaum, der eine Vielzahl
von Elementen einschlieBlich eines Stamms
umfasst, wobei jedes Element entweder ein
Blatt oder ein Nichtblatt ist, wobei jedes Nicht-
blatt ein linkes Kind und ein rechtes Kind hat
und wobei jedes Element einen Wert hat, der
einem From_Node und einem To_Node zuge-
wiesen ist, wobei jedem Blatt ein Préadikat
zugewiesen ist und jedem Nichtblatt ein
ODER-Operator oder ein UND-Operator zuge-
wiesen ist; und

{(b) Verarbeiten eines jeden Elements des
Baums als Durchquerung in festgelegter Rei-
henfolge, wobei jedes Pradikat als ein Bogen
zugewiesen wird, der einen From_Node mit
einem To_Node verbindet.

6. Vertahren nach Anspruch 5, wobei die Verarbeitung
eines jeden Elements die folgenden Schritte
umfasst: ’

Zuweisen eines Startknotens bzw. einen End-
knotens eines resultierenden Graphen zu dem
From_Node und To_Node des Stamms;

fur jedes ODER-Operatorelement Zuweisen
von From_Node und To_Node des ODER:-
Operatorelements als From_Node bzw.
To_Node des linken Kinds und des rechten
Kinds des ODER-Operatorelements;

for jedes UND-Operatorelement:
Erzeugen eines neuen Knotens;
Zuweisen des From_Node des UND-Ope-

ratorelements als From_Node des linken
Kinds des UND-Operatorelements;

29 EP 0 616 289 B1 30

Zuweisen des neuen Knotens als To_Node
des linken Kinds und als From_Node des
rechien Kinds als UND-Operatorelement;
und

Zuweisen des To_Node des UND-Opera-
torelements als To_Node des rechten
Kinds des UND-Operatorelements; und

fur jedes Pradikatelement Erzeugen eines
Bogens, der den From_Node mit dem
To_Node des Pradikatelements verbindet,
und Zuweisen des Pradikats zu dem

Bogen.

7. Verfahren nach Anspruch 1, das weiter den Schritt

der interaktiven Kennzeichnung eines Abschnitis
der grafischen Datenflussdarstellung als eine logi-
sche NICHT-Operation enthaltend, die auf den
Abschnitt angewandt wird, umfasst.

Verfahren zur Verwendung in einem Computersy-
stem fir die Umwandlung einer Darsteliung einer
Booleschen Algebraanweisung in eine grafische
Darsteliung, das weiter die folgenden Schritte
umfasst:

(2) Anordnen der Booleschen Anweisung in
einem Analysebaum, wobei jedes Element des
Analysebaums einen From_Node des Baums
und einen To_Node des Baums beinhaltet und
jedes Element ein Blatt oder ein Nichtblatt ist
und jedes Nichtblatt ein linkes Kind und ein
rechtes Kind hat, wobei ein Blatt ein Bedin-
gungspradikat ist und ein Nichtblatt ein ODER-
Operator oder ein UND-Operator ist; und

(o) Verarbeiten eines jeden Elements des
Baums als Durchquerung in vorgegebener Rei-
henfolge, um jedes Bedingungspradikat als
einen Graphbogen zuzuweisen, der so defi-
niert ist, dass er den From_Node eines Gra-
phen mit dem To_Node eines Graphen
verbindet, das die folgenden Schritte umfasst:

Zuweisen von From_Node und To_Node
des Stammelements als Beginning_Node
und Ending_Node des Graphen;

fur ein ODER-Operatorelement Zuweisen
von From_Node und To_Node eines
ODER-Operatorelements als From_Node
und To_Node beider Kinder des ODER-
Operatorelements;

far ein UND-Operatorelement Erzeugen
eines New_Node, Zuweisen des
From_Node des UND-Operatorelements

10

15

20

25

30

35

40

45

50

16

als From_Node des linken Kinds des UND-
Operatorelements, des To_Node des
UND-Operatorelements als To_Node des
rechten Kinds des UND-Operatorele-
ments, Zuweisen des New_Node als
To_Node des linken Kinds und als
From_Node des rechten Kinds des UND-
Operatorelements.

9. Verfahren zur Verwendung in einem Computersy-

stem far die Umwandlung einer grafischen Darstel-
lung, die eine Vielzah! von Knoten umtasst, die
durch Bogen verbunden sind, in eine Darstellung
einer Booleschen Algebraanweisung, das die fol-
genden Schritte umfasst:

{a) Wenn zwei Bégen die gleichen To_Nodes
und From_Nodes haben, Verknipfen der
Bo6gen zu einem Bogen, wobei die Bedingun-
gen, die durch die urspranglichen Bégen fest-
gelegt sind, durch einen logischen ODER-
Operanden verknipft werden;

(b) Wenn zwei Bogen in einer Reihe mit einem
dazwischen liegenden Third_Node, bei dem
diese Bogen enden und beginnen, vorhanden
sind, Verknipfen der Bogen zu einem Bogen,
wobei die Bedingungen, die durch jeden
urspranglichen Bogen festgelegt sind, durch
einen UND-Operator verknipft werden;

(c) Autlegen eines Graphenpfads auf einen
Stapelspeicher;

(d) Abheben eines Pfads von einem Stapel-
speicher fir die weitere Verarbeitung;

(e) Verarbeiten des Piads, um ein Segment
einer Booleschen Algebraanweisung zu erzeu-
gen, wahrend etwaige neue Pfade ermittelt
werden;

(f) Auflegen eines neuen Pfads auf den Stapel-
speicher; und

(0) Wiederholen der Schritte (d) bis (f), bis der
Stapelspeicher leer ist.

10. Computersystem, das Folgendes umfasst: eine

Zentraleinheit, einen Speicher, eine Anzeigeein-
heit, eine Benutzerinteraktionseinheit sowie Mittel,
die so korfiguriert sind, dass sie die Schritte eines
Verfahrens nach einem der vorangehenden
Anspriche ausfthren.

Revendications

Procédé pour formuler interactivement des requé-

31 EP 0 616 289 B1 32

tes relatives a la récupération de données enregis-
trées dans des tables comportant des colonnes et
des rangs dans un systéme de base de données
informatisé comportant une unité centrale, une
mémoire, un écran, et un dispositif dinteraction
avec l'utilisateur, le procédé comprenant fes phases
qui consistent &:

recevoir une entrée identifiant au moins une
table contenant les données de requéte ;

recevoir une enirée identifiant au moins une
colonne de la table identifiée comme contenant
les données de requéte ;

recevoir une entrée identifiant au moins un
rang de la table identifiée comme contenant les
données de requéte & l'aide d’'une déclaration
de condition et caractérisé en ce que ladite
déclaration de condition est formulée interacti-
vement par les phases suivantes :

(a) afficher une représentation graphique
de la circulation comprenant au moins une
ligne de flux comprenant au moins un arc,
un prédicat attribué & chaque arc et une
pluralité de noeuds, chaque arc étant posi-
tionné entre un noeud From_Node {expé-
diteur) et un noeud To_Node
(destinataire), ol les prédicats présents
sut une méme ligne sont combinés par une
opération logique ET, et les prédicats
situés sur différentes lignes de circulation
entre les mémes noeuds sont combinés au
moyen d'une opération logique OU ;

{b) recevoir une entrée spécifiant une posi-
tion sur une ligne de flux de la représenta-
tion graphique de la circulation pour
linsertion d'un prédicat ;

(c) recevoir I'entrée du prédicat ;

(d) afficher la représentation graphique de
la circulation avec le prédicat inséré a la
position spécifiée ;

(e) convertir la représentation graphique
de la circulation en une instruction d'algé-

bre booléenne correspondante ; et

{f) visualiser I'énoncé d'algébre booléenne.

2. Procédé selon la revendication 1 comprenant en

outre les phases qui consistenta :

recevoir une entrée de l'utilisateur ajoutant un
prédicat & un énoncé d'algébre booléenne ;

10

20

25

30

35

40

45

50

55

17

convertir I'énoncé d'algébre booléenne en une
représentation graphique de circulation corres-
pondante ; et

afficher & 'écran la représentation graphique
de la circulation.

3. Procédé selon la revendication 1 comprenant en

outre les phases pour convertir en un énoncé
dalgebre booléenne un graphique qui est une
représentation graphique de circulation, compre-
nant les phases qui consistenta :

(a) comprimer le graphique en un nombre mini-
mal de noeuds et d'arcs en combinant 2 arcs et
en remplagant les dits arcs par un seul, pour
produire un graphique comprimeé, cette combi-
naison de 2 arcs étant réalisée en combinant
chaque paire darcs ayant les mémes
To_Nodes (noeuds destinataires) et
From_Nodes (noeuds expéditeurs) en un arc
résultant, les prédicats attribués a la paire
d'arcs et connectés par un opérateur logique
OU étant attribués en tant que prédicat résul-
tant & 'arc résultant ; et en combinant chaque
paire d'arcs ayant les mémes To_Node (noeud
destinataire) qu'un premier arc et From_Node
{noeud expéditeur) qu'un deuxiéme arc en un
arc résultant, les prédicats attribués & la paire
d'arcs, connectés par un opérateur ET, étant
attribués & larc résultant comme prédicat
résultant ; et

{b) créer une chaine algébrique booléenne cor-
respondante en identifiant au moins un chemin
dans le graphique comprimé allant d'un noeud
de départ & un noeud de fin.

Procédé selon la revendication 3 ol la phase de
création d'une chaine algébrique booléenne cor-
respondante comprend en outre les phases suivan-
tes:

(a) empiler un chemin graphique sur une pile ;

(b) extraire un chemin de la pile en vue d'un
traitement ultérieur ;

(c) traiter le chemin pour produire un segment
d'énoncé d'algébre booléenne tout en identi-
fiant tout nouveau chemin ;

(d) empiler un nouveau chemin sur la pile ; et

{e) répéter les phases (b) a (d) jusqu'a ce que
la pile soit vide.

5. Procédé selon la revendication 2 comprenant en

33 EP 0 616 289 B1 34

outre les phases suivantes pour convertir la repré- ment une partie de la représentation graphique de
sentation d'un énoncé d'algébre booléenne en une la circulation comme étant une partie sur laquelle
représentation graphique de circulation : est appliquée une opération logique NON.

(a) arranger I'énoncé d'algébre booléenne en
un arbre d'analyse comprenant une pluralité
d'éléments y compris une racine, chaque élé-
ment étant une feuille ou une non-feuille, cha-
que non-feuille ayant un enfant gauche et un
enfant droit, et chaque élément ayant une
valeur attribuée pour un From_Node (noeud
expéditeur) et un To_Node (noeud destina-
taire), ols & chaque feuille est attribué un prédi-
cat et & chaque non-feuille un opérateur OU ou
un opérateur ET ; et

(b) traiter chaque élément de I'arbre en traver-
sée préordonnée en assignant chaque prédicat

10

15

8. Procédé A utiliser dans un systéme informatique,

pour convertir la représentation d'un énoncé d'alge-
bre booléenne en une représentation graphique
comprenant les phases suivantes :

(a) arranger I'énoncé booléen en un arbre
d'analyse dans lequel chaque élément de
l'arbre danalyse a un From_Node (noeud
expéditeur) et un To_Node (noeud destina-
taire) dans rarbre et ol chaque élément est
une feuille ou une non-feuille, et chaque non-
feuille a un entant gauche et un enfant droit, ot
une feuille est un prédicat de condition et une
non-feuille est un opérateur OU ou un opéra-

en tant quarc connectant un From_Node teur ET ; et
(noeud expéditeur) a un To_Node (noeud des- 20
tinataire). (b) traiter chaque élément de l'arbre en traver-
sée préordonnée pour attribuer chaque prédi-
6. Procédé selon la revendication 5, ou le traitement cat de conditon en fant qu'arc graphique
de chaque élément comprend les phases qui con- connectant un From_Node (noeud expéditeur)
sistenta : 25 graphique & un To_Node (noeud destinataire)
graphique, au moyen des phases suivantes :
attribuer respectivement au From_Node racine
{noeud expéditeur) et au To_Node racine assigner le From_Node (noeud expédi-
(noeud destinataire) un noeud de départ et un teur) racine et le To_Node (noeud destina-
noeud d'arrivée d'un graphique résultant ; 30 taire) racine en tant que noeud de départ
pour chagque opérateur QU, assigner le {Beginning_Node) et noeud darrivée
From_Node (noeud expéditeur) et le To_Node (Ending_Node) du graphique ;
{noeud destinataire) de Fopérateur OU en tant
que, respectivement, From_Node (noeud pour un opérateur OU, assigner le
expéditeur) et To_Node (noeud destinataire) 35 From_Node (noeud expéditeur) et le
de l'enfant gauche et de I'enfant droit de l'opé- To_Node (noeud destinataire) d'un opéra-
rateur OU ; . teur OU en tant que From_Node (noeud
pour chaque opérateur ET : expéditeur) et To_Node (noeud destina-
créer un nouveau noeud ; taire) des deux enfants de 'élément-opéra-
assigner le From_Node (noeud expéditeur) de 40 teur OU ;
l'opérateur ET en tant que From_Node (noeud
expéditeur) de Fenfant gauche de Fopérateur pour un opérateur ET, créer un nouveau
ET; noeud (New_Node), assigner le
assigner le nouveau noeud en tant que From_Node (noeud expéditeur) de 'opéra-
To_Node (noeud destinataire) de I'enfant gau- 45 teur ET comme From_Node (noeud expé-
che et From_Node (noeud expéditeur) de diteur) de l'enfant gauche de I'élément-
I'enfant droit de I'opérateur ET ; et opérateur ET, le To_Node (noeud destina-
assigner le To_Node (noeud destinataire) de taire) de lopérateur ET en tant que
lopérateur ET en tant que To_Node (noeud To_Node (noeud destinataire) de I'enfant
destinataire) de I'enfant droit de l'opérateur ET 50 droit de Tlopérateur ET, assigner le
; et New_Node (nouveau noeud) en tant que
pour chaque prédicat, créer un arc connectant To_Node (noeud destinataire) de I'enfant
le From_Node (noeud expéditeur) au To_Node gauche et en tant que From_Node (noeud
(noeud destinataire) du prédicat et assigner le expéditeur) de I'enfant droit de Fopérateur
prédicat a l'arc. 55 ET.
7. Procédé selon la revendication 1 comprenant en 9. Procédé a utiliser dans un systeme informatique
outre la phase qui consiste a désigner interactive- pour convertir une représentation graphique com-

18

35 EP 0 616 289 B1

prenant une pluralité de noeuds reliés par des arcs
en une représentation d’énoncé d'algébre boo-
)éenne, comprenant les phases qui consistent a :

(a) quand deux arcs ont les mémes To_Nodes §
(noeuds destinataires) et From_Nodes
(noeuds expéditeurs), combiner les arcs en un
arc, les conditions représentés par les arcs
dlorigine étant liées par un opérateur logique
ou; 10

{b) quand deux arcs sont en série avec un
Third_Node (troisigme noeud) présent entre
eux avec les deux m&mes arcs entrant et sor-
tant de lui, combiner les arcs en un arc, les 15
conditions représentées par chaque arc origi-

nel étant reliées par un opérateur ET ;

(c) empiler un chemin graphique sur une pile ;

20
(d) extraire un chemin de la pile ne vue de son
traitement ;

{e) traiter le chemin pour produire un segment
d'enoncé dalgébre booléenne tout en identi- 25
fiant tout nouveau chemin ;

(f) empiler un nouveau chemin sur la pile ; et

(g) répéter les phases (d) & (f) jusqu'a ce que la 30
pile soit vide.
10. Systéme informatique comprenant : comportant
une unité centrale, une mémoire, un écran, et un
dispositif d'interaction avec l'utilisateur, et un moyen 35
configuré pour exécuter les phases d'un procédé tel
que revendiqué dans I'une quelconque des revendi-
cations précédentes.

40

45

50

55

19

EP 0 616 289 B1

ll'lllllllllllllllllll

B 9)
— \ e
(4]
<
(a4
(@]
5 = % = \
™
N \ = %
(=]
m < Ay
0 3 T O 0
= o 3 Jn_m_u
| el=ls
oo
Dm_u
mNA oo

CPU

CONTROL [C—— >
18~
00

I"I-I'll'llll'llll‘ullllllllllllll

FIG 7

20

EP 0 616 289 B1

Query — Test2

Open Edit View Help

52
_E; 52
Table

52 52 Npy To
}é?&\ H Loc;cl

66 Group\Sorting

i

.~ 62

Selection Selection Selection~ 145 D99
for
groups
ENTER ENTER
56~ GRAPHICAL TEXT
CONDITION CONDITION
S -
58 ' | 64
CONVERT CONVERT
GRAPHICAL TEXT TO
CONDITION GRAPHICAL
TO TEXT & CONDITION
DISPLAY & DISPLAY

i

'F—sa

I

MODIFY
GRAPHICAL
CONDITION

)

FIlG. 3

21

l

MODIFY
TEXT
CONDITION

L

EP 0 616 289 B1

- Row Selection — Testl i
Edit View Help L~ 70
72
P O
- Query — Test2 i
Open Edit View Help 70
170
174
Tables Row ; / 772[3__ To
Selection | Local
Sorting pgta
O—R’—~ 71
Tables Row
Selection

F/G. 77

22

EP 0 616 289 B1

80 vV Graphical Conditions o]
\{ Selected Edit Options Windows Help Color
SQL Clause AppIAy
86
84~~[|—x>1oo AND (A=3 OR ((B=4 OR C=5) AND Y<5) 1: X>100 |
92 ~ 2:A=3 7
A=3 3:.B=4
82] 4:C=5
== 5: Y56
X>100 B=4 —— Y<5 S
T Ny
98 96 M
< { o 1>
[/ | Graphical Conditions o{(]
Selected Edit QOptions Windows Help Color
SQL Clause Apply
|-;.=2o OR (X>100 AND (A=3 OR ((B=4 OR C=5) AND Y 1: Z=20
NOT Al 2: X>100
12 - 3: A=
1 33-4] A i_ 4:B=4
130 5:C=5
104 43, || 130 6: Y<5
97 { 103 PHB=%
(102\ ,_1'5__‘ - 130
X>100 J C=5 P+ ¥<5
131 99
Z=20
\98 100 ~
<l o—) 2

23

EP 0 616 289 B1

Row Selection — Testl

Edit View Help
L145
J0B = 'MGR o 146
|
|
140 Vs 142
SALARY+COMM > 15000 COMM not NULL A
_ 144
- Row Selection — Testl
Edit View Help
JOB = 'MGR’
_—~ 147 142

140
COMM not NULL] § ‘

SALARY+COMM > 15000 [e=e-

V(A

24

EP 0 616 289 B1

Group Selection — Test2 i

Edit View Help

Compute for
each group

120

== AVG.SALARY > 15000 -

AVG(SALARY)

FIG. 9

Sort — Testl

Edit Help

160

§ 162

DEPTNAME

(

162

-

NAME

m16:

FlG. 70

25

194

———— =1 NODE ——NEXT NODE IN NODE LIST

EP 0 616 289 B1

TWO ARCS
(FIRST ARC AND SECOND ARC)
BOTH HAVE TO_NODE = NODE
AND THE SAME FROM_NODE

180

§787

COMBINE PREDICATES ASSIGNED TO EACH ARC
WITH AN OR OPERATOR; ASSIGN AS PREDICATE
OF FIRST ARC; DELETE ALL REFERENCES TO SECOND ARC

ONLY ONE ARC 182
INTO NODE (FIRST ARC) AND
ONE ARC OUT OF NODE
(SECOND ARC)

q 183

COMBINE PREDICATES ASSIGNED TO EACH ARC
WITH AN AND OPERATOR; ASSIGN AS PREDICATE OF
FIRST ARC; FIRST ARC TO_NODE -=—SECOND ARC
TO_NODE; DELETE ALL REFERENCES TO NODE AND
SECOND ARC

MORE NODES

26

EP 0 616 289 B1

do untit No_Changes = true
No_Changes = true

do for each node in Node Array

ifIn 4> 1 then—— ;4 - 180

if two arcs in In,_Listm)de have same from node

Combine condition text between two arcs with "(text1)OR(text2)’
181~ Place combined text into first arc

Delete all references to second arc

No_Changes = false ‘

endif
el§e Ve 182
in In node = 1 AND Out node = 1 then

Combine condition text between two arcs with '(text1)AND(text2)’
183~ Place combined text into first arc .
Delete all references to second arc
No_Changes = false
endif
endif
enddo
enddo

PG 75

27

EP 0 616 289 B1

P4-—|:}—P5 186
184
185
P1 P3—{B]
P2

188 189
o0 2 190 7{97

\(Nodes \ \ Arcs
187~ JAN in Out From To
Node In Out List List # Node Node Condition
A o 3 - 124 ' A C Ct
B 1 0 3 - 2 A C Cc2
C 3 1 1,25 3 3 C B Cc3
D 1 1 4 5 4 A D C4
5 D C CS
YA

(Al -(((c1)or(C2) Yor((c4)and(c5))) and (c3))—={B}-— 200

Nodes Arcs
In Out From To
Node In Out List List # Node Node Condition

A 0 1 - 1 1 A B (((C1)or(C2))OR((C4)
B 1 0 1 - and(C5)))and(C3)
o 0 O - -
D 0 O

LG 75

28

EP 0 616 289 B1

INTIALIZE TEXT, PLACE, START, END
PUSH START, PLACE ONTO STACK [~ 2%°

——

NODE, PLACE~—TOP OF STACK | ~ 207
COUNT—@

!

ARC —NEXT ARC OUT OF NODE
COUND — COUNT + 1 — 208

COUNT # 1

YES

ADD "OR™ TO TEXT AT PLACE; INCREMENT PLACE

.

AR\ NO ¢ 210
TO-NODE

END
YES

ADD "C™ TO TEXT AT PLACE; INCREMENT PLACE

1¢ g211

ADD ARC PREDICATE TO TEXT AT PLACE; INCREMENT PLACE

>

FIG. 764

29

EP 0 616 289 B1

212

ADD "AND C” TO TEXT AT PLACE; INCREMENT PLACE
PUSH ARC TO_NODE, PLACE ONTO STACK
ADD ™))" TO TEXT AT PLACE; INCREMENT PLACE

220

ALL ARCS

NO _~ out oF NODE

PROCESSED

NO

FIG. 768

30

EP 0 616 289 B1

Start_Node = starting node of graph (IN=0 and OUT>0)
End_Node = ending node of graph (IN>0 and OUT=0)

Boolean_Text =
Current_Place = 1
push Start_Node and Current_Piace onto stack — 205

do while (stack not empty)

Current_Node = pop top node off of stack
Current_Place = pop top place off of stack « 207
Arc_Count = 0

do for each are
if From_NodeArc = Current_Node then
Arc_Count = Arc_Count +1

If Arc_Count —= 1 then

Current_Place = add_text Current_Place, ()R’) — 209
endif '

if "To_Node'p,c —= End_Node then
Current_Place = add_text(Current_Place, (') — 210

Current_Place = add_text(Current_Place.Condition ppg)~~ 211

if 'To_Node'prc —= End_Node then
Current_Place = add_text(Current_Place, 'AND’)
Current_Place = add_text(Current_Place, ()

Push 'To—Node’ . ond Current_Place onto stack — 2712

Ar:
Current_Place = add_text(Current_Place. ')’)

Current_Place = add_text(Current_Place. ')’)
endif
endif
enddo
enddo

procedure add_text(Location, Text)

/*add_text inserts the string ‘Text’ into Boolean_Text at Location,*/
/#*returning a new location just AFTER the inserted text. +/

Boolean_text = INSERT(Boolean_text, Text, Location)
New_Location = Location just AFTER the inserted text

return New_location

FIG 77

31

EP 0 616 289 B1

215 214 . 216
{ \)
Nodes / Arcs Stack
\' from To
213 ™~y Node # Node Node Condition Node.Place
A 1 A C P1 Al
B 2 C D P2
C 3 A D P3
D 4 C B P4
5 D B P5
_

Boolean_Text

Current_Node = A
Current_Place =1
Start_Node = A
End_Node =B

/G 78

32

EP 0 616 289 B1

Build Parse Tree from Boolean algebra statementp— 230

!

Root From_Node~Begin Node (0) |~ 234
Root To_Node—End Node (1)

/‘ 232

fNew Node—1]

ELEMENT=—next parse tree element by preorder traversal

236

(

Create New Arc

ELEMENT

= Predicate Arc - element

238

ELEMENT Left and Right

YES |child To and From nodes

~ELEMENT To and From
Nodes

ELEMENT
= OR operator

New Node — New Node +1
ELEMENT LeftChild from = Element_From
ELEMENT Leftchild to — New_Node |}~ 240
ELEMENT Rightchild from — New_Node
ELEMENT Rightchild to = Element_To

NO All ELEMENTS

processed

F/G 79

33

EP 0 616 289 B1

Build parse tree for Boolean condition —~ 230

Next_Node_ld — O
Parse_Tree_Node = Root of parse tree

+ Set up first node of tree for processing _~ 234
Parse_TreeNode from_node = Next_Node_ID
Next_Node = Next_Node_ld + 1

Parse_Tree_Node {5 noge = Next_Node_ld

DO for each Parse_Tree_Node BY preorder traversal

/* All simple conditions (X>1) have no children x/
If Parse_Tree_Node has no children THEN
Create graph arc where
"To Node” is Parse_Node, node ~ 6
"From Node” is Parse_Tree_Node g g
"Condition” is Parse_Tree_Node condir:;;: oce

else
if Parse_Tree_Nodeconnector = OR then
Child = Parse_Tree_Node .t child
Child from_node = Parse_Tree_Node from_node
Childto_node = Parse_Tree_Node to_node
Child = Parse_Tree_Noderight_chid

Child from_node = Parse_Tree_Node from_node
Childto_node = Parse_Tree_Node to_node

~— 238

else /+ AND connector #/
Next_Node = Next_Node_ld + 1
Child = Parse_Tree_Nodeqst child
Child from_node = Parse_Tree_Node from_node
Childto_node = Next_Node_ID — 240
Child = Porse_Tree_Node,ight_chﬂd
Childto_node = Next_Node_ID
Childto_node = Parse_Tree_Node to_node
endif

endif
enddo

FIG. 20

EP 0 616 289 B1

251
for} 250

/‘

252]and ~253
254 255

A<l or (B<2 and C<3)

New_Node_Jd = 3

#condition
251~ 1 OR
252~2 A4
253~3 AND
254~ 4 B
255~ 5 C<3

F/G.

266 Arc list
RN

From
condition Node

Ad 1
B<2 1
C<3 2

From To
Node Node

To

Node
2 ~~260
3262
3 264

Final arc list for: A<l or (B<2 and C<3)

G 22

35

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES .

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

[BLACK BORDERS

U] IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

U FADED TEXT OR DRAWING

J BLURRED OR ILLEGIBLE TEXT OR DRAWING

U SKEWED/SLANTED IMAGES |

O COLOR OR BLACK AND WHITE PHOTOGRAPHS

() GRAY SCALE DOCUMENTS

J LINES OR MARKS ON ORIGINAL DOCUMENT

0 REFERENCE(S) OR EXHIBIT(S) SUBMITTED AkE POOR QUALITY

) OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2004-12-08 Foreign Reference

